§5.3 TEORÍA DEL POTENCIAL: panorama

- Potencial escalar en el plano y en el espacio
 - •<u>concepto</u>: dado \underline{u} : $\Omega \subset \mathbb{E} \to \mathbb{V}$, se dice que f: $\Omega \subset \mathbb{E} \to \mathbb{R}$, es un <u>potencial escalar</u> de \underline{u} en $\Omega \Leftrightarrow \underline{\nabla} f = \underline{u}$, $\forall P \in \Omega$..
 - <u>existencia</u>: condiciones *necesarias*, condiciones *suficientes*, *discusión* en presencia de singularidades.
 - •cálculo del potencial escalar:
 - 1. mediante integrales de línea: $f(X) = f(X_0) + \int_{X_0}^{X} \underline{u} \cdot d\underline{r}$ (integral indepte. del camino)
 - 2. mediante ecuaciones diferenciales en derivadas parciales (E.D.P.): $f = ? / \underline{\nabla} f = \underline{u}$
- •Potencial vector en el plano y para algunos campos del espacio
 - •<u>concepto</u>: dado \underline{u} : $\Omega \subset \mathbb{E} \to \mathbb{V}$, se dcie que \underline{w} : $\Omega \subset \mathbb{E} \to \mathbb{V}$ es un potencial vector de \underline{u} en $\Omega \Leftrightarrow \underline{\nabla} \times \underline{w} = \underline{u}$, $\forall P \in \Omega$.
 - •existencia: condiciones necesarias, condiciones suficientes, discusión
 - <u>Peculiaridades</u> del potencial vector de un campo bidimensional o del plano \mathbb{E}_2 : función de corriente
 - •<u>Cálculo en el plano</u>: 1) mediante integrales de línea: $\Psi(X) = \Psi(X_0) + \int_{X_0}^{X} \underline{u} \cdot \underline{n} \, ds$ (integral indepte. del camino)
 - •2) mediante EDP: $\underline{\nabla} \times (\Psi \underline{\mathbf{k}}) = \underline{\mathbf{u}} \dots$
 - •<u>cálculo del pot. vector en el espacio</u> para cierto tipo de campos vectoriales: •<u>mediante EDP</u>

5.3 - a) Potencial escalar (1): conceptos y existencia

- 1) <u>concepto</u>: dado \underline{u} : $\Omega \subset \mathbb{E}_{3(6|2)} \to \mathbb{V}$, un c. esc. f: $\Omega \subset \mathbb{E}_{3(6|2)} \to \mathbb{R}$, es un pot. escalar de \underline{u} en $\Omega \Leftrightarrow \underline{\nabla} f(P) = \underline{u}(P)$, $\forall P \in \Omega$.
 - •Si f es potencial, también lo es f + cte.
 - •Superficies (o líneas) equipotenciales: f(P) = cte.
 - •las *líneas de corriente* o de campo de \underline{u} son familia de *curvas ortogonales* a las superficies (líneas) equipotenciales $\forall P \in \Omega$.
- existencia
 - **A. condiciones** *necesarias* (que debe cumplir \underline{u}) para que exista f:
 - •si $\underline{u} = \nabla f \Rightarrow \nabla \times \underline{u} = \underline{0} = \text{cte.}$: \underline{u} debe ser *irrotacional*.
 - •otras cond. neces. son propiedades de \underline{u} por ser irrotacional, que se desprenden del th. de Stokes (motivan llamar conservativo a todo campo irrotacional): a) Si Ω es simpl. conexo en $\mathbb{E}_{3(6\ 2)}$:
 - • $\forall C = \text{curva cerr.} \subset \Omega : \oint_C \underline{u} \cdot d\underline{r} = 0$, porque $C = \partial S$, $S = \text{simpl. conexo} \subset \Omega$ (Stokes)
 - • \forall P, Q $\in \Omega$: $\int_{P}^{Q} \underline{u} \cdot d\underline{r}$ es *independiente del camino* que una P y Q, porque entre dos curvas distintas, C_1 y C_2 , que unan P y Q, puede extenderse un casquete S *simplemente conexo* cuyo borde sea $\partial S = C_1 C_2$ (o $C_2 C_1$). (Stokes)

Curso 2010-11 1

- b) Si el dominio del campo irrotacional \underline{u} , Ω , no es simpl. conexo en $\mathbb{E}_{3(6\ 2)}$:
 - $\forall C = \text{curva cerr.} \subset \Omega : \text{si } C \text{ no rodea la singularidad de } \underline{u}, \oint_C \underline{u} \cdot d\underline{r} = 0$ si $C \text{ rodea la singularidad,} \oint_C \underline{u} \cdot d\underline{r}$ puede ser $K \neq 0$, pero conservará el mismo
 - valor cte., K, para cualquier otra curva cerrada que la rodee. (Stokes generalizado) $\bullet \forall P, Q \in \Omega$: $\int_{P}^{Q} \underline{u} \cdot d\underline{r}$ no depende del camino C_1 que una P con Q, siempre que otro camino distinto C_2 una los ptos. dejando la sing. del mismo lado que C_1 ; pero si C_2 deja la singularidad de distinto lado que C_1 , las dos integrales diferirán en el valor de K.
- **B. condiciones** suficientes (que <u>basta que</u> cumpla <u>u</u>) para que exista pot. f:
 - •si $\underline{\nabla} \times \underline{u} = \underline{0}$ en Ω = simplemente conexo $\Rightarrow \exists f / \underline{u} = \underline{\nabla} f$ en Ω

porque $f(X) = f(X_0) + \int_{X_0}^{X} \underline{u} \cdot d\underline{r}$ cumple $\underline{\nabla} f = \underline{u}$ en Ω (la demostración usa th. de

Sinces)
$$\frac{\partial f}{\partial x}(x, y, z) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\int_{X_0}^{(x + \Delta x, y, z)} \underline{u} \cdot d\underline{r} - \int_{X_0}^{(x, y, z)} \underline{u} \cdot d\underline{r} \right] = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{(x, y, z)}^{(x + \Delta x, y, z)} \underline{u} \cdot d\underline{r} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\underline{u}(x + t_m \Delta x, y, z) \cdot \underline{i} \Delta x \right] = \lim_{\Delta x \to 0} u_x(x + t_m \Delta x, y, z) = u_x(x, y, z)$$

- •Discusión de existencia $\underline{en\ la\ práctica}$: supuesto que \underline{u} es irrotacional
 - •si Ω es simplemente conexo basta que \underline{u} sea irrotacional para $\exists f$ potencial
 - •si Ω NO es simplemente conexo ("taladrado") se comprueba si u produce circulación nula sobre una curva cerrada cualquiera que rodee la singularidad: si la integral se anula, existe potencial en Ω ;

si la integral no se anula, puede reducirse convenientemente Ω a un subdominio $\Omega^* \subset$ Ω <u>simplemente conexo</u> en el que <u>u</u> admitirá potencial escalar f.

- <u>Eiemplos</u>: 1) Discutir el carácter del campo $\underline{u} = \mathbf{g}^{\theta} = 1/\rho \underline{e}_{\theta}$, $\Omega = \mathbb{E}_3 \{\text{Eje Z}\}$, $\Omega^* = \mathbb{E}_3$ $-\Pi$, con Π : $\{\theta = \theta_0\}$, para cualquier θ_0 (por ejemplo, π) semiplano de borde el eje Z; 2) PR4.14
- 3) cálculo del potencial escalar
- •mediante integrales de línea sobre C arbitr.: $f(X) = f(X_0) + \int_{Y}^{A} \underline{u} \cdot d\underline{r}$ donde C une X_0 con X, y se elige para simplificar los cálculos (poligonal cartesiana o curvilínea, arco de circunferencia..: figura)
- •se pueden utilizar componentes curvilíneas si el campo se simplifica en ellas
 - •Ejemplos: PR4.15; PR4.24b; PR4.26b
- •mediante EDP: Dado <u>u</u> irrotacional se busca una función escalar $f: \Omega$ (ú Ω^*) $\subset \mathbb{E}_{3(6\ 2)} \to \mathbb{R}$ / $\underline{\nabla} f = \underline{u} \iff$

 - •en cartesianas: $\frac{\partial f}{\partial x_i}(x,y,z) = U_i(x,y,z)$ (sistema de E.D.P.) •en curvilíneas (¡covariantes de \underline{u} !) : $\frac{\partial f}{\partial x^i}(u,v,w) = u_i(x,y,z)$
- •Ejemplos: PR4.15, 24, 25A, 27.

Curso 2010-11

b) Potencial vector en el espacio: (1) existencia

•<u>concepto</u>: dado \underline{u} : $\Omega \subset \mathbb{E}_3 \to \mathbb{V}_3$, \underline{w} : $\Omega \subset \mathbb{E}_3 \to \mathbb{V}_3$, es un *pot. vector* de \underline{u} en $\Omega \Leftrightarrow \underline{\nabla} \times \underline{w} = u$, $\forall P \in \Omega$.

•existencia:

•condiciones necesarias (debe cumplir u) para que exista w

- si $\underline{u} = \underline{\nabla} \times \underline{w} \Rightarrow \underline{\nabla} \cdot \underline{u} = 0$ = cte. (campo \underline{u} debe ser *adivergente* o *solenoidal*)
- otras condiciones se deducen de apl. th. de Gauss: si $\underline{\nabla} \cdot \underline{u} = 0 \iff \underline{u}$ es solenoidal) $\Rightarrow \underline{u}$ es "conservativo de flujos": i) flujos nulos, a través de sup. cerradas; que no encierren singularidades o flujos iguales , a través de casquetes con el mismo borde si no encierran singularidades entre ambas; ii) flujos iguales a través de superficies cerradas que encierren singularidad (aislada o "burbuja"), de valor K, constante, no necesariamente nula; o flujos que se diferencian en K a través de casquetes S_1, S_2 , que comparten el mismo borde pero encierran una singularidad (aislada).

•condiciones suficientes (basta que cumpla \underline{u}) para que exista \underline{w}

- •si Ω es retráctil (no contiene *burbujas*) las condiciones necesarias son suficientes.
- •si Ω contiene singularidades aisladas, se comprueba si \underline{u} da flujo nulo a través de una superficie cerrada cualquiera que encierre la singularidad aislada: si se anula el flujo, \underline{u} es rotacional en Ω , o sea admite pot. Vector; y si no, puede reducirse Ω a una subregión simpl. conexa en la que
- •Ejemplos: PR4.16, 17, 21i, 25Ai.

c) Potencial vector en el plano: (1) existencia

•Concepto: dado \underline{u} : $\Omega \subset \mathbb{E}_2 \to \mathbb{V}_2$, se dice \underline{w} : $\Omega \subset \mathbb{E}_2 \to \mathbb{V}_3$, es un *pot vector* de \underline{u} en $\Omega \Leftrightarrow \underline{\nabla} \times \underline{w} = \underline{u}$, $\forall P \in \Omega$.

- •el pot. \underline{w} no es único, pues también valdría $\underline{w} + \nabla \phi$, $\forall \phi \in \mathcal{C}^1(\Omega)$
- •en el plano se puede determinar un pot. vec. de la forma: $\underline{w} = \Psi(x,y)\underline{\mathbf{k}}$ ó $\Psi(\rho,\theta)\underline{\mathbf{g}}_{\varepsilon}$ (vector ortogonal al plano de trabajo) $\Leftrightarrow \{\partial_{\nu}\Psi = u_{x}, \partial_{x}\Psi = -u_{\nu}\}$ (Sma. EDP's)
- Ψ se llama *función de corriente* de \underline{u} porque las líneas Ψ = cte. son tangentes al campo \underline{u}

•Existencia:

- •condiciones necesarias: siendo $\underline{u} = P(x,y)\underline{\mathbf{i}} + Q(x,y)\underline{\mathbf{j}}$
 - •si $\underline{u} = \underline{\nabla} \times \underline{w} \Rightarrow \underline{\nabla} \cdot \underline{u} = 0$ = cte. (campo \underline{u} debe ser *adivergente*: o solenoidal: $\partial_x P + \partial_y Q = 0$
 - •otras propiedades son consecuencia directa del th. de Green-Gauss: por ser \underline{u} adivergente: si $\underline{u} = \underline{\nabla} \times \underline{w} \Rightarrow \underline{u}$ es conservativo de flujos planos, (de las integrales de línea de la componente *normal* del campo), es decir:
 - •1) $\oint_C \underline{u} \cdot \underline{n} \, ds = 0$ a través de curvas cerradas que no encierren agujeros. Y $\oint_C \underline{u} \cdot \underline{n} \, ds = K$, constante (posiblmte. no nula) para toda curva cerrada que encierre una singularidad
 - •2) $\int_C \underline{u} \cdot \underline{n} ds = \int_A^B \underline{u} \cdot \underline{n} ds$ no depende del camino que una A y B, si entre dos caminos distintos envuelven una región smpl. conexa; y se diferencian en el valor de K si
- •Las condic. nec. son sufficientes en regiones Ω *simplemente conexas* (sin agujeros). [Al probar *solenoidal* \Rightarrow *rotacional* se construye $\Psi(X) = \Psi(X_0) + \int_{X_0}^{X} \underline{u} \cdot \underline{n} \, ds$]
- •discusión de la existencia en la práctica: análoga al caso del potencial escalar
- •Ejemplos: Campo PR4.14; PR4.16.

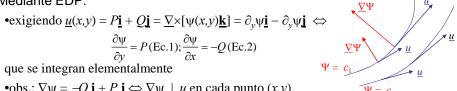
Curso 2010-11 3

Pot. vector en el plano: (2) cálculo de ψ de corrte.

•Mediante EDP:

$$\frac{\partial \Psi}{\partial y} = P(\text{Ec.1}); \frac{\partial \Psi}{\partial x} = -Q(\text{Ec.2})$$

•obs.: $\nabla \psi = -Q \mathbf{i} + P \mathbf{j} \Leftrightarrow \nabla \psi \perp \underline{u}$ en cada punto (x,y).



 \therefore <u>u</u> es tgte. en cada pto. a las curvas $\psi(x,y) =$ cte., que coincidirán con las *líneas de* campo (o de corriente) de \underline{u} . Así, ψ se llama función de corriente del campo \underline{u}

•Ejemplos: PR4.18, PR4.19 y PR4.20

•Mediante integrales de línea:

- •Si se define $\psi(x,y) = \psi(x_0,y_0) + \int_{x_0}^{x} \underline{u} \cdot \underline{n} \, ds$ (camino *C* arbitrario, siempre que dos caminos distintos no rodeen agujeros del dominio de \underline{u} o si se sabe que K = 0. Si no lo es, se puede reducir la región Ω a una nueva, simplemente conex, $\Omega^* \subset \Omega$, para no rodear singularidades).
- •Ejemplos: 1) Un campo a la vez adivergente e irrotacional (ecuación de Laplace y campos armónicos): $\underline{u} = x \, \underline{\mathbf{i}} - y \, \underline{\mathbf{j}}$; también, $\underline{u} = \underline{g}^{\theta}$.

2) PR4. 19, 17b, 18,, 21,

Apéndice: Cálculo del potencial vector en el espacio

•mediante EDP: Dado \underline{u} adivergente en Ω , se busca $\underline{w} \in \mathcal{C}^1(\Omega) / \underline{\nabla} \times \underline{w} = \underline{u}$ $\Leftrightarrow \varepsilon^{ijk} \partial_{x_i} w_i = u_k$ (cartesianas) $\Leftrightarrow g^{1/2} \varepsilon^{ijk} \partial_{x_i} w_i = u^k$. (curvilíneas). En cartesianas se tendría el sistema de e.d.p.:

$$\frac{\partial w_3}{\partial x_2} - \frac{\partial w_2}{\partial x_3} = u_1(\text{Ec.1}), \frac{\partial w_1}{\partial x_3} - \frac{\partial w_3}{\partial x_1} = u_2(\text{Ec.2}), \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} = u_3(\text{Ec.3})$$

•resolución práctica: basta obtener una $\underline{solución\ particular}$, \underline{w}_{p} (lo q. permite introducir simplificaciones, como anular una compnte. del campo incógnita, w, o darle la forma particular que se desee)

•por ej., si se busca
$$\underline{w_p} / w_3 = 0$$
 ($\underline{w_p} | | XY$): las e.d.p. se rescriben simplificadas:
$$-\frac{\partial w_2}{\partial x_3} = u_1(\text{Ec.1}), \frac{\partial w_1}{\partial x_3} = u_2(\text{Ec.2}), \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} = u_3(\text{Ec.3})$$

y se integran sistemáticamente, como se aprecia en el sgte

<u>Ejemplo</u>: Potencial vector del campo $\underline{u}(x,y,z) = 2Kx\underline{i} - Ky\underline{i} - Kz\underline{k}$

•solución general: cualquier otro campo de la forma $\underline{w} = \underline{w}_p + \nabla F$ es sol. de la e.d.p., para todo campo escalar F de clase 2 en Ω .

•PR4.20, 21ii, PR4.26

Curso 2010-11 4